GAME PRODUCTION ENVIRONMENTS

FACHHOCHSCHULE SALZBURG
SOMMER SEMESTER 2023

//CHRISTINA PIBERGER

g — 0 . ’
Za v CHRISTINA PIBERGER 0
, ?.

GAME PROGRAMMER ENTERTAINMENT

\\ CHRISTINA.PIBERGER@GMAIL.COM

r About me

B.Sc. - Electrical Engineering and Information Technology
M.Sc. - Robotics, Cognition, Intelligence

Worked ~4 years in Software Development:
- 2D/3D Rendering for Embedded Systems (C/C++)
- Indoor Navigation for robots

Currently: Game Programmer at Pow Wow (~2 years)

ABOUT THIS CLASS

w We have 4 sessions:

- Thu, 13 April (13:30 - 16:45, 15 min break) - Today!
- Fri, 14 April (09:00 - 11:30, 15 min break)

- Thu, 11 May (13:30 - 16:00, 15 min break)

- Fri, 12 May (09:00 - 12:30, 2x15 min break)

Grading is based on assignment:

- No groups. Every student has to create their own gitlab repo.

- For more details see separate assignment files on Wiki:

~ https://wiki.mediacube.at/wiki/index.php?title=Game Production Environments - SS 2023#
* + . Unreal Engine ‘

https://wiki.mediacube.at/wiki/index.php?title=Game_Production_Environments_-_SS_2023#Unreal_Engine
https://wiki.mediacube.at/wiki/index.php?title=Game_Production_Environments_-_SS_2023#Unreal_Engine

Session 1 Session 2
| - Introduction - Input System + Ejection
- Epic Games " - Ragdoll + Physics + Anim BP
- Unreal Editor UI
- Actors & Components Session 3

- Blueprints (+ Reflection) - Main Menu, Loading Levels

[15 min break at ~15:00] - UI, Start/Finish race

- Game Framework & Most common classes Session 4

=\ Fgckaging & Publishing - Display Highscore List

- Cleaning up project

- Features in Stuntfest . TBD

- Look at template projects
- Materials + Landscape Tool Any topic wishes from you?

[ends at 16:45]

e

EPIC GAMES

PN

History
1994: Tim Sweeney founded Epic Mega Games

1998: Release of Unreal Engine 1 alongside the game “Unreal”

2002: Release of Unreal Engine 2
2006: Release of Unreal Engine 3 alongside “Gears of War”
2012: Sweeney sells 40% of company to Tencent for $330 million.

2014: Release of Unreal Engine 4
Switch from individual licensing to a subscription model + 5% royalty on gross revenue
2015 - Removed subscription fee entirely, only royalties remain

2017: Release of Fortnite Battle Royale is a huge success
2022: Release of Unreal Engine 5

(“Standard”) License Today: A 5% royalty is due only if the lifetime gross revenue from a

product/game that incorporates Unreal Engine code exceeds $1 million USD
https://www.unrealengine.com/en-US/license

https://www.unrealengine.com/en-US/license

LN

.t.

The story behind Fortnite

2011: Fortnite trailer and announcement
https://youtu.be/2GSfieYVpkQ

2017: Three big titles in parallel development and pre-alpha stage
- Unreal Tournament 4: FPS and next title of the Unreal series
- Paragon: MOBA to compete with League of Legends
- Fortnite: Tower defense + building mechanics to compete with Minecraft

March 2017: Release of PUBG the first big successful Battle Royal

September 2017: Fortnite Battle Royale was released as free-to-play
- 10 mil. active players in just 2 weeks
- Unreal Tournament 4 and Paragon get cancelled

Today & Future:
- Fortnite is already considered a “social network”
- Tim Sweeney’s vision is to build a metaverse

https://youtu.be/2GSfjeYVpkQ

UNREAL ENGINE

INTRODUCTION

UNREAL ENGINE

ACTORS AND COMPONENTS

ot
>

‘@
Actors

AACtor Actor: Any pbjecf Thg’r can be placed into a level
Y (e.g. PointLight, StaticMeshActor, ...)

APawn Pawn: Actor that can be controlled by a PlayerController or AIController via
. “possession”

Character: Pawn with additional functionality (SkeletalMesh +
ACharacter MovementComponent)

Controllers are non-physical Actors that can possess Pawns
to control their actions.

Player Controller: Takes player input and translates it into

interactions in the game.

Important function calls are Possess() and Unpossess()

AActor

AController

A

APlayerController

AAIController

e B

by

Actor Lifecycle

PreInitializeComponents

l

InitializeComponent

InitializeComponent is called on each
component of the Actor.

!

PostInitializeComponents

4

BeginPlay

T
1
1
1
1
:

v

Tick

v
EndPlay

BeginPlay is called after the Actor's
components have been initialized.

Tick can also be disabled. If enabled it’s

called every frame or a specified interval.

EndPlay is called right before Actor gets
destroyed.

These three can also be
overridden in Blueprint:

& Event BeginPlay
D

& Event Tick
o

Delta Seconds

< Event End Play

b

End Play Reason

W e
‘& ®

Components

UObject

A

Y

UComp

onent

I

UActorComponent

USceneComponent

Corhponen’rs can be added to Actors to extend
their functionality.

Composition = has-a relationship

Inheritance = is-a relationship

ActorComponent: Non-physical component (e.g. UCharacterMovementComponent)

¥ , S'c;éneComponen'r: Has it’s own transform in world (e.g. UCameraComponent)

by

Components on BP_ThirdPersonCharacter

(from UE template project)

[¢ Components
-+ Add Q

€ BP_ThirdPersonCharacter (Self)
8¢ Capsule Component (CollisionCylinder)

" Arrow Component (Arrow)

2, Mesh (CharacterMesh0)

o CameraBoom

B« FollowCamera

4~ Character Movement (CharMoveComp)

Edit in C++
Edit in C++

Editin C++

Capsule, Arrow and Mesh are
inherited SceneComponents.

Spring Arm and Camera Component
are SceneComponents and were
added directly in the Blueprint and
not inherited from C++.

Character Movement Component
is a ActorComponent and was
inherited.

3rd Person Character

Camera
Component

StaticMeshActor:
Actor + Static
Mesh Component

UNREAL ENGINE

BLUEPRINT

by

Blueprint

- Blueprint is the name of Unreal’s Visual Scripting System
- The Blueprint Editor is a node-based graph editor

- Blueprint Functions can call C++ functions and vice versa

void ACharacter::Jump()
F Jump {

2} EnHaﬁ&aﬂlnputA(;tian 1A_Jump

Triggered p —m — o — — — » bPI"essedJump = True;

JumpKeyHoldTime

Started > Target [self |

Ongoing [
F Stop Jumping
Canceled [Target is Characte

AU = void ACharacter::StopJumping()

The white line is rooe e] T o
the “execution line”. ResetJumpState();

Action Value

Input Action

by

Blueprint: Node Colors

(Pure) Function

Has no execution line.
Called when their
output is required by
an impure node.

" f Get Controller

Target is Pawn

Target | self

Return Value

(Impure) Function
Called according to
execution line.

ement Input i

Target \ self I

World Direction

© X[00] [00) 2[00]
Scale Value IE

Force

Event
Entry point for
execution.

€ EnhancedinputAction IA_Jump

Triggered [
Started [
Ongoing
Canceled >
Completed [>
Action Value

Input Action

Cast
To convert object
pointer into subclass.

»+ Cast To PlayerController

D O

Object Cast Failed >

As Player Controller

Blueprint: Pin and Wire Colors

©F Make Literal Int

O Value @

Return Value O»

= Make Vector

x[o3]

Return Value @

. F Make Literal Bool

v[00]
z[00]

Value Return Value

©F GetClass

Object Return Value

ﬂranch
D

Condition

= Make Transform

= Make Rotator

X (Roll)
O Y (Pitch) [0,0}
WAVEN) IO—_Ol

@ Location
Return Value @
i @ Rotation

Scale
[1.0]

2. 1.0] 7[1,0]

Return Value C»

J Print String
Truep — P D
False [In String

Development Only
v

© F Make Literal String

Value ‘:]

Return Value

by

Frequently used BP functions

Actor <-> Component

F QEQV Ownelr 5 F Get Component by Class -

Target [self | ReturnValue RetmmValne

Target [self | Return Value

Component Class

Pawn <-> Controller

F Get Controller

rarget i

Target |

S rawi

self I

Return Value

Tf“ Get Controﬂ—egi-’awn

Target is

Target

3 Lontroier

self |

Return Value

LN

.(;‘

Level Blueprint

Each level has one Level Blueprint

=2 New Empty Blueprint Class...

PCI renT IS. Level scrl pt Acl'.or 72 Convert Selection to Blueprint Class...
B5 Open Blueprint Class...

It acts as a level-wide global event graph that has
references to every Actor in the level

i- Open Level Blueprint

® GameMode: Edit BP_ThirdPersonGameMode

Should only handle level-specific functionality, Gamehodle: Not avestiddert
as its code is not re-usable in other levels

Don’t get lazy and put everything in the Level BP to avoid Blueprint communication.

Fay

C++ vs Blueprint?

Blueprints are flexible (compile without closing the Editor)
=> ideal for rapid prototyping

Execution is generally slower than C++
Use functions and comments
Avoid using Tick in Blueprint

Avoid “Spaghetti” Blueprint

Practical Example (direct BP communication)

Engine
C++ Classes

Game
C++ Classes

Game
Blueprint Classes

€ GetOWNINGACLOr() m— Animlinstance

A

Controller

PlayerController

Actor
isa
GetControlledPawn() =————3
Pawn
¢ GetController()
isa \
AlController Character
DG_BaseCharacter

Character

B T T T T

Controller

My Function

Different types of Blueprint Communication

- Get reference to other object (via casting) AETACE
and then do a direct function call or > »
qccess q properfy 'm Object Cast Failed >

-

— As Character
Target | self] Return Value

- Interface call:
- Get reference to other object and call interface function |
- If object does implement interface, function will get called D
- If object does not implement interface, nothing happens

Target Return Value

Tagto Check Edit v

- Event Dispatcher:
- Objects can bind their functions to a sender’s delegate
- 1-to-many communication (aka Broadcasting)
- Implements the well-known Observer software design pattern, where the
sender does not need to know who the receivers are

Target Mesh

o

UNREAL ENGINE

REFLECTION

'i

Reflection

- Generally, reflection is a mechanism that allows a program to inspect itself.

(in C++ this is done with a lot of “template magic” and exploiting SFINAE)

- In Unreal, reflection exposes C++ classes, their functions and properties to

the Unreal Editor.

- The necessary code for that is generated at compile time by

the Unreal Header Tool (UHT).

- As users, we need to add these macros to our declarations:

UENUM() UCLASS() USTRUCT() UFUNCTION() UPROPERTY()

- UHT creates <filename>.generated.h - has to be included in header file

P

UFUNCTION

C++ functions that can be called from BP: L T)

Target is My Actor

B O

UFUNCTION(BlueprintCallable) generates

Target‘se[f l Return Value
bool MyBlueprintCallable() { return true; };

UFUNCTION(BlueprintPure)

F My Blueprint Pure
bool MyBlueprintPure() { return true; };

Return Value

Functions that can be implemented in BP (called from C++):

o1 C De 1lmpemented 1 ++; can be 1mple & Event My Blueprint Implementable Event
UFUNCTION(BlueprintImplementableEvent)

oid MyBlueprintImplementableEvent(); o

generates

€ Event My Blueprint Native Event

O

UFUNCTION(BlueprintNativeEvent)
/oid MyBlueprintNativeEvent(); void AMyActor::MyBlueprintNativeEvent_Implementation()

List of UFUNETION () specifiers: https://docs.unrealefngine.com/5.1/en-US/ufunctions-in-unreal-endine/

https://docs.unrealengine.com/5.1/en-US/ufunctions-in-unreal-engine/

P

UPROPERTY

UPROPERTY (EditAnywhere)
bool MyEditAnywhereFlag;

UPROPERTY (EditDefaultsOnly)
bool MyEditDefaultsOnlyFlag;

UPROPERTY (EditInstanceOnly)
ool MyEditInstanceOnlyFlag;

UPROPERTY (VisibleAnywhere)
bool MyVisibleAnywhereFlag;

UPROPERTY (VisibleDefaultsOnly)
0ol MyVisibleDefaultsOnlyFlag;

UPROPERTY(VisibleInstanceOnly)
bool MyVisibleInstanceOnlyFlag;

UPROPERTY (BlueprintReadOnly)
bool MyBlueprintReadOnlyFlag;

UPROPERTY (BlueprintReadWrite)
0l MyBlueprintReadWriteFlag;

generates

generates

Exposes variable to the Unreal Editor + includes it in Unreal’s memory management system.

Class Defaults in BP;:

Details General Actor Misc Streaming

Actor placed in world:

Q Transform

My Actor » My Actor

My Edit Anywhere Flag My Edit Anywhere Flag

My Edit Defaults Only Flag My Edit Instance Only Flag

My Visible Anywhere Flag My Visible Anywhere Flag

My Visible Defaults Only Flag My Visible Instance Only Flag

In child BP:

Variables
My Actor

Get My Blueprint Read Only Flag
Get My Blueprint Read Write Flag

Set My Blueprint Read Write Flag

List of UPROPERTY () specifiers: https://docs.unrealefigine.com/5.1/en-US/unreal-engine-upropertiés/

https://docs.unrealengine.com/5.1/en-US/unreal-engine-uproperties/

P

UPROPERTY

UPROPERTY()

LR L ed) Member variables of non-primitive data
UPROPERTY () types should always be a UPROPERTY
TAcrays nt> Myereay; (to register for garbage collection)
UPROPERTY()

TSet<int> MySet;

UPROPERTY()
TMap<int, FName> MyMap;

continue doing something right away

& Event BeginPlay (B Bind Event to My Multicast Delegate "7 PrintSting
» » —Pp
- . Target In String
Dynamic multicast delegates are n g
. . © MyActor Development Only;
declared and exposed to BP like this: -

DECLARE_DYNAMIC_MULTICAST_DELEGATE(FMyMulticastDelegateType);

do something when event arrives
& MyMulticastDelegate_Event

UPROPERTY (BlueprintAssignable)
FMyMulticastDelegateType MyMulticastDelegate;

f Print Striingii
» (>

In String ‘ Event]

Deyelopment.Only.
v

List of UPROPERTY () specifiers: https://docs.unrealefgine.com/5.1/en-US/unreal-engine-upropertiés/

https://docs.unrealengine.com/5.1/en-US/unreal-engine-uproperties/

UNREAL ENGINE

GAME FRAMEWORK &
MOST COMMON CLASSES

Game Mode, Game State, Player State

The Game Mode defines the rules of game
- Handles spawning the players

Server Only Server & Clients Server & Owning Client Owning Client Only

| | |
. | : :
- Exists only on the server ® @ :
. o | | |
- e.g. evaluates win-lose conditions, how AGamelode /7%] AdameSizts ! !
many lives each player starts with e i i
1
| | |
| | |
The Game State manages information that is i ® i oY) i ®
relevan for q". C.Onne.CTed plgyers E APlayerState L : APlayerController ! : : AHUD
- e.g.remaining time until round ends, ! ! !
| R 1 | ——
track scores of all players : : : ,
| L e
The Player State manages information that is ! Aean B | |
relevant for one specific player | |) 7
| I I
| | |
| | |

- e.g.username, remaining lives

Note that none of these classes will survive a level change! They share lifetime of UWorld.

by

Game Mode, Game State, Player State

Edit | Window Build Actor Help F Unreal
A Trackl+ id_Blue A MI_Solid._
< Cinematics

& Platforms v

Project default classes can be set in sy
Project Settings -> Maps & Modes

2 Details @ World Settings x

u & Project Settings

Character

Variant Manager Game Mode
World Settings

All Settings Q Pawn
(] ¥

Project Project - Maps & Modes

Description

Point Light Device Output Log

Interchange Results Browser € €ro
Player Start Message Log v L v €k o
Output Log . 0 e (A XC)
Trigger Box G c e € k, [C]
Open Marketplace crBo
Quixel Bridge ero

Encryption o These settings are saved in DefaultEngine.ini, which is currently writable.

GameplayTags
Default Modes

ult GameMode BP_ThirdPersonG (Gl XO)

Selected GameMode

Maps & Modes Trigger Sph

Movies Precomputed Visibiity

Load Layout

Packaging
Default Pawn Class BP_ThirdPersonC (Gl XO)

s €EKo Each world can specify a override in the
Game e = . World Settings.

Asset Manager Player State C a = @ ’,5 @

Asset Tools Spec S0P ero

=> Levels can have different Game Modes

Supported Platforms

by

Game Instance, Local Player, World

Game Instance:
- High-level manager object that persists as long as
the game is running
- Ideal place to store data across maps
- Can be set in ProjectSettings -> Maps & Modes
- It creates World, LocalPlayer, and GameMode

Local Player:
- It stays alive across maps
- LocalPlayer triggers the spawn of PlayerController
- Multiple can be created for local multiplayer
(splitscreen/coop)

World:

Project - Maps & Modes

o These settings are saved in DefaultEngine.ini, which is currently writable

Default Modes
Default Maps
Local Multiplayer
Game Instance

Game Instance Class

Engine - General Settings

o' These settings are saved in DefaultEngine.ini, which is currently writable

Fonts

- Top-level object representing a map => does not live across maps
- GameMode, GameState and PlayerState share lifetime with World.

by

Subsystems

Singleton “manager” classes that share lifetime with their parent system.

Subsystem Parent Class Lifetime

Engine UEngineSubsystem Both in editor and in-game, | think.

Editor UEditorSubsystem When the Editor starts.

Gamelnstance UGameInstanceSubsystem As soon as your game starts, stays alive until the game is closed.

LocalPlayer ULocalPlayersubsystem Matches the lifetime of its parent uLocalrlayer , can move between levels.

World Unorldsubsystem Matches its parent uworld , is effectively per-level.

Some examples:
- Unreal’s Enhanced Input System is a LocalPlayerSubsystem
- To track score over multiple maps, one could use a GamelInstanceSubsystem.
- Ina RPG a “quest manager” could be a WorldSubsystem.

Data Assets

Asset specifically designed to:
- store data + be easily serializable

Allows for data-driven game design
(not to be confused with “data-oriented” design - the concept behind ECS)

.}

Pick Parent

Creates a
Data Asset
instance

= (3 Blueprint Class

An Actor is an object that can be plac
Level = world
A Pawnis g
&) Material input from a c
Niagara System
Player Controller

)
Animation Game Mode Base

Artificial Intelligence
Blueprints [#] Actor Component
Cinematics

Editor Utilities

Creates a child
s | Blueprint class
™ derived from

Gameplay

[. Data Asset

Materials

A, Scene Component

Media 3 items

={3 Blueprint Class

Level

A
{

Material

@ Niagaraoye.

Animation
Artificial Intelligence
Blueprints
Cinematics
Editor Utilities
Foliage

FX

Gameplay
Input
Materials
Media
Miscellaneous
Paper2D
Physics
Sounds
Textures

User Interface

Wi composite Data Table

[Curve

:‘!\g Curve Atlas

@) CurveTable

@ DataAsset

O Dota Layer
> 0

j| Data Table
Haptic Feedback Buffer

) Haptic Feedback Curve

) Haptic Feedback Sound Wave

) HLOD Layer

= Interchange Blueprint Pipeline Base

Interchange Import Test Plan

Interchange Pipeline

by

Data Assets: How to setup in practice

In C++:
- Create a new class that derives from UDataAsset
and add properties there
- Add a UObjectPtr<UDataAsset> in the class that
should use your Data Asset (e.g. MyActor)

In the Editor:
- Create a Data Asset instance
- Assign the Data Asset in your BP class
- Access properties from data asset via the
TObjectPtr (has to be BlueprintReadable)

(see example in MyActor + MyDataAsset)

O

UMyDataAsset : public UDataAsset

bY()

(EditDefaultsOnly, BlueprintReadOnly)

FName MyName = NAME_None; @&

TY(EditDefaultsOnly, BlueprintReadOnly)
)at MyFloat = 1.f; @

PERTY(EditDefaultsOnly, BlueprintReadOnly)

bool bMyBool = true; ®

tsOnly, BlueprintReadOnly)
set> MyDataAsset =

Target My Name

—

Target My Float

—————

Target My Bool
Actions taking a(n) My Data Asset
Object Reference
X getmy|

VEUELIES
My Data Asset

(Get My[:Rl
CHGet MyJEER
= [Name

Context Sen.

UNREAL ENGINE

PACKAGING AND PUBLISHING

What is building?

- Generally, building is the process of converting source code files intfo standalone software artifact(s).
- In C++, building is to compile the source code (.cpp/.h) into obj-files and then linking them into an
executable (.exe), a dynamic-load library (.dll) or a static library (.lib).

What is cooking?

- Unreal Engine stores content assets in particular formats such as PNG for texture data or WAV for
audio. These might not be supported by the target platform.

- The process of converting content from the internal format to the platform-specific format is referred
to as cooking. (https://docs.unrealengine.com/5.1/en-US /cooking-content-in-unreal-engine/)

What is packaging?

- Building and Cooking the project for a specific target platform (e.g. Windows)

- Output is the “package”: a distributable set of files, such as an installer or the game as executable.
What is deploying?

- The process of making software available to be used on a system by users and other programs.
(e.g. uploading your game on Steam where people can download it)

https://docs.unrealengine.com/5.1/en-US/cooking-content-in-unreal-engine/

by

BuildCookRun

Packaging is done by the Unreal Automation Tool (UAT) with a particular command

called BuildCookRun.

u & Project Settings
All Settings
‘ = ‘,%1 Platforms v

Project Project - Packaging
Description CP-PC

of These settings are saved in DefaultGame.ini, which is currently writable Enable cooking on the fly

Packaging

Android
HoloLens
108

Linux
LinuxArm64
TVOS

Windows

Project

lly built editor v

Projects/FHS_Unreal/Build

A
A
AN
A
A
AN

A
L)

Refresh platform status

Eng ine Ui e ; Platforms With No Compiled Support

Al System)
& Project Launcher.

Animation Modifiers

"%ENGINE_DIR%\Engine\Build\BatchFiles\RunUAT.bat" BuildCookRun
-project="%PROJECT_DIR%\%PROJECT_NAME%.uproject"” -noP4 -platform=Win64

Package Project
Cook Content

Use Project Setting (Developmet
DebugGame

-config=%BUILD_CONFIGURATION% -build -cook -stage -pak -allmaps -CrashReporter -archive

-archivedirectory="%ARCHIVE DIRECTORY%"

LET'S TAKE A LOOK AT STUNTFEST

by

Key Gameplay Features of Stuntfest

©

Sl

___—-—Summon - Q

Is in ragdoll
/ Can air-jump
Can summon vehicle

ect

- ey

Can drive + use nitro

Can walk + jump ;
: Can eject character
Can enter the vehicle
Can take damage and get destroyed

same as
On ground
H. —— StaNd Up =— "
Isin ragdoll SarE as
o Can summon vehicle

Can stand up

- Different Game Modes (race, distance jump, ...)

e Resources & References

Epic’s Documentation: https://docs.unrealengine.com/5.1/en-US/

- Blog by Ben Humphrey: https://benui.ca/unreal/
- Blog by Tom Looman: https://www.tomlooman.com/?post type=post
- Blog by Nuno Afonso: http://www.nafonso.com/

- Network Compendium by Cedric 'eXi' Neukirchen:
https://cedric-neukirchen.net/Downloads/Compendium/UE4 Network Compendium
by Cedric eXi Neukirchen.pdf

; BN “John Coogan - Why Epic Games Took 25 Years to make Fortnite: i
2 ¥ https://youtu.be/vNbrhLf36Uo

https://docs.unrealengine.com/5.1/en-US/
https://benui.ca/unreal/
https://www.tomlooman.com/?post_type=post
http://www.nafonso.com/
https://cedric-neukirchen.net/Downloads/Compendium/UE4_Network_Compendium_by_Cedric_eXi_Neukirchen.pdf
https://cedric-neukirchen.net/Downloads/Compendium/UE4_Network_Compendium_by_Cedric_eXi_Neukirchen.pdf
https://youtu.be/vNbrhLf36Uo

by

Bonus Slide: Collisions between two moving objects
- Each object has its own collision profile

- The response is the least blocking one, like so:

Object A
Ignore Overlap Block
Ignore Ignore Ignore Ignore
11
.E_’, Overlap Ignore Overlap Overlap
o
Block Ignore Overlap Block

