
game production Environments

Fachhochschule Salzburg
Sommer semester 2023

//Christina piberger

christina Piberger
game programmer

christina.piberger@gmail.com

About me

- B.Sc. - Electrical Engineering and Information Technology
- M.Sc. - Robotics, Cognition, Intelligence

- Worked ~4 years in Software Development:
- 2D/3D Rendering for Embedded Systems (C/C++)
- Indoor Navigation for robots

- Currently: Game Programmer at Pow Wow (~2 years)

about this class

We have 4 sessions:
- Thu, 13 April (13:30 - 16:45, 15 min break) - Today!
- Fri, 14 April (09:00 - 11:30, 15 min break)
- Thu, 11 May (13:30 - 16:00, 15 min break)
- Fri, 12 May (09:00 - 12:30, 2x15 min break)

Grading is based on assignment:
- No groups. Every student has to create their own gitlab repo.

- For more details see separate assignment files on Wiki:
https://wiki.mediacube.at/wiki/index.php?title=Game_Production_Environments_-_SS_2023#
Unreal_Engine

https://wiki.mediacube.at/wiki/index.php?title=Game_Production_Environments_-_SS_2023#Unreal_Engine
https://wiki.mediacube.at/wiki/index.php?title=Game_Production_Environments_-_SS_2023#Unreal_Engine

Session 1
- Introduction
- Epic Games
- Unreal Editor UI
- Actors & Components
- Blueprints (+ Reflection)

[15 min break at ~15:00]

- Game Framework & Most common classes
- Packaging & Publishing

- Features in Stuntfest
- Look at template projects
- Materials + Landscape Tool

[ends at 16:45]

Session 2
- Input System + Ejection
- Ragdoll + Physics + Anim BP

Session 3
- Main Menu, Loading Levels
- UI, Start/Finish race

Session 4
- Display Highscore List
- Cleaning up project
- TBD

Any topic wishes from you?

Epic Games

History
1994: Tim Sweeney founded Epic Mega Games

1998: Release of Unreal Engine 1 alongside the game “Unreal”

2002: Release of Unreal Engine 2
2006: Release of Unreal Engine 3 alongside “Gears of War”
2012: Sweeney sells 40% of company to Tencent for $330 million.

2014: Release of Unreal Engine 4
Switch from individual licensing to a subscription model + 5% royalty on gross revenue
2015 - Removed subscription fee entirely, only royalties remain

2017: Release of Fortnite Battle Royale is a huge success

2022: Release of Unreal Engine 5

(“Standard”) License Today: A 5% royalty is due only if the lifetime gross revenue from a
product/game that incorporates Unreal Engine code exceeds $1 million USD
https://www.unrealengine.com/en-US/license

https://www.unrealengine.com/en-US/license

The story behind Fortnite

2011: Fortnite trailer and announcement
https://youtu.be/2GSfjeYVpkQ

2017: Three big titles in parallel development and pre-alpha stage
- Unreal Tournament 4: FPS and next title of the Unreal series
- Paragon: MOBA to compete with League of Legends
- Fortnite: Tower defense + building mechanics to compete with Minecraft

March 2017: Release of PUBG the first big successful Battle Royal

September 2017: Fortnite Battle Royale was released as free-to-play
- 10 mil. active players in just 2 weeks
- Unreal Tournament 4 and Paragon get cancelled

Today & Future:
- Fortnite is already considered a “social network”
- Tim Sweeney’s vision is to build a metaverse

https://youtu.be/2GSfjeYVpkQ

Unreal Engine

Introduction

Unreal Engine

Actors and components

Actors

AActor

APawn

ACharacter

Actor: Any object that can be placed into a level
(e.g. PointLight, StaticMeshActor, …)

Pawn: Actor that can be controlled by a PlayerController or AIController via
“possession”

Character: Pawn with additional functionality (SkeletalMesh +
MovementComponent)

AController

AAIControllerAPlayerController

Controllers are non-physical Actors that can possess Pawns
to control their actions.

Player Controller: Takes player input and translates it into
interactions in the game.

Important function calls are Possess() and Unpossess()

AActor

Actor Lifecycle

PreInitializeComponents

InitializeComponent

PostInitializeComponents

BeginPlay BeginPlay is called after the Actor's
components have been initialized.

Tick can also be disabled. If enabled it’s
called every frame or a specified interval.

EndPlay is called right before Actor gets
destroyed.

Tick

EndPlay

These three can also be
overridden in Blueprint:

InitializeComponent is called on each
component of the Actor.

Components

UObject

UComponent

UActorComponent USceneComponent

Components can be added to Actors to extend
their functionality.

Composition = has-a relationship

Inheritance = is-a relationship

ActorComponent: Non-physical component (e.g. UCharacterMovementComponent)

SceneComponent: Has it’s own transform in world (e.g. UCameraComponent)

Capsule, Arrow and Mesh are
inherited SceneComponents.

Spring Arm and Camera Component
are SceneComponents and were
added directly in the Blueprint and
not inherited from C++.

Components on BP_ThirdPersonCharacter
(from UE template project)

Character Movement Component
is a ActorComponent and was
inherited.

3rd Person Character

StaticMeshActor:
Actor + Static
Mesh Component

Camera
Component

Template Scene

Unreal Engine

Blueprint

Blueprint

- Blueprint is the name of Unreal’s Visual Scripting System
- The Blueprint Editor is a node-based graph editor

- Blueprint Functions can call C++ functions and vice versa

The white line is
the “execution line”.

Blueprint: Node Colors

Event
Entry point for
execution.

Cast
To convert object
pointer into subclass.

(Impure) Function
Called according to
execution line.

(Pure) Function
Has no execution line.
Called when their
output is required by
an impure node.

Blueprint: Pin and Wire Colors

Actor <-> Component Pawn <-> Controller

Frequently used BP functions

Level Blueprint

- Each level has one Level Blueprint

- Parent is: Level Script Actor

- It acts as a level-wide global event graph that has
references to every Actor in the level

- Should only handle level-specific functionality,
as its code is not re-usable in other levels

- Don’t get lazy and put everything in the Level BP to avoid Blueprint communication.

- Blueprints are flexible (compile without closing the Editor)
=> ideal for rapid prototyping

- Execution is generally slower than C++

- Use functions and comments

- Avoid using Tick in Blueprint

- Avoid “Spaghetti” Blueprint

C++ vs Blueprint?

Practical Example (direct BP communication)

- Get reference to other object (via casting)
and then do a direct function call or
access a property

- Interface call:
- Get reference to other object and call interface function
- If object does implement interface, function will get called
- If object does not implement interface, nothing happens

- Event Dispatcher:
- Objects can bind their functions to a sender’s delegate
- 1-to-many communication (aka Broadcasting)
- Implements the well-known Observer software design pattern, where the

sender does not need to know who the receivers are

Different types of Blueprint Communication

Unreal Engine

Reflection

Reflection

- Generally, reflection is a mechanism that allows a program to inspect itself.
(in C++ this is done with a lot of “template magic” and exploiting SFINAE)

- In Unreal, reflection exposes C++ classes, their functions and properties to
the Unreal Editor.

- The necessary code for that is generated at compile time by
the Unreal Header Tool (UHT).

- As users, we need to add these macros to our declarations:
UENUM() UCLASS() USTRUCT() UFUNCTION() UPROPERTY()

- UHT creates <filename>.generated.h - has to be included in header file

C++ functions that can be called from BP:

Functions that can be implemented in BP (called from C++):

UFUNCTION

List of UFUNCTION() specifiers: https://docs.unrealengine.com/5.1/en-US/ufunctions-in-unreal-engine/

generates

generates

https://docs.unrealengine.com/5.1/en-US/ufunctions-in-unreal-engine/

UPROPERTY

List of UPROPERTY() specifiers: https://docs.unrealengine.com/5.1/en-US/unreal-engine-uproperties/

Exposes variable to the Unreal Editor + includes it in Unreal’s memory management system.

Class Defaults in BP: Actor placed in world:

generates

generates

In child BP:

https://docs.unrealengine.com/5.1/en-US/unreal-engine-uproperties/

UPROPERTY

Member variables of non-primitive data
types should always be a UPROPERTY
(to register for garbage collection)

Dynamic multicast delegates are
declared and exposed to BP like this:

List of UPROPERTY() specifiers: https://docs.unrealengine.com/5.1/en-US/unreal-engine-uproperties/

https://docs.unrealengine.com/5.1/en-US/unreal-engine-uproperties/

Unreal Engine

game framework &
most common classes

Game Mode, Game State, Player State

The Game Mode defines the rules of game
- Handles spawning the players
- Exists only on the server
- e.g. evaluates win-lose conditions, how

many lives each player starts with

The Game State manages information that is
relevant for all connected players

- e.g. remaining time until round ends,
track scores of all players

The Player State manages information that is
relevant for one specific player

- e.g. username, remaining lives

Note that none of these classes will survive a level change! They share lifetime of UWorld.

Game Mode, Game State, Player State

Project default classes can be set in
Project Settings -> Maps & Modes

Each world can specify a override in the
World Settings.

=> Levels can have different Game Modes

Game Instance, Local Player, World

Game Instance:
- High-level manager object that persists as long as

the game is running
- Ideal place to store data across maps
- Can be set in ProjectSettings -> Maps & Modes
- It creates World, LocalPlayer, and GameMode

Local Player:
- It stays alive across maps
- LocalPlayer triggers the spawn of PlayerController
- Multiple can be created for local multiplayer

(splitscreen/coop)

World:
- Top-level object representing a map => does not live across maps
- GameMode, GameState and PlayerState share lifetime with World.

Subsystems

Singleton “manager” classes that share lifetime with their parent system.

Some examples:
- Unreal’s Enhanced Input System is a LocalPlayerSubsystem
- To track score over multiple maps, one could use a GameInstanceSubsystem.
- In a RPG a “quest manager” could be a WorldSubsystem.

Data Assets

Asset specifically designed to:
- store data + be easily serializable

Allows for data-driven game design
(not to be confused with “data-oriented” design - the concept behind ECS)

Creates a child
Blueprint class

derived from
Data Asset

Creates a
Data Asset
instance

Data Assets: How to setup in practice

In C++:
- Create a new class that derives from UDataAsset

and add properties there
- Add a UObjectPtr<UDataAsset> in the class that

should use your Data Asset (e.g. MyActor)

In the Editor:
- Create a Data Asset instance
- Assign the Data Asset in your BP class
- Access properties from data asset via the

TObjectPtr (has to be BlueprintReadable)

(see example in MyActor + MyDataAsset)

Unreal Engine

Packaging and publishing

What is building?
- Generally, building is the process of converting source code files into standalone software artifact(s).
- In C++, building is to compile the source code (.cpp/.h) into obj-files and then linking them into an

executable (.exe), a dynamic-load library (.dll) or a static library (.lib).

What is cooking?
- Unreal Engine stores content assets in particular formats such as PNG for texture data or WAV for

audio. These might not be supported by the target platform.
- The process of converting content from the internal format to the platform-specific format is referred

to as cooking. (https://docs.unrealengine.com/5.1/en-US/cooking-content-in-unreal-engine/)

What is packaging?
- Building and Cooking the project for a specific target platform (e.g. Windows)
- Output is the “package”: a distributable set of files, such as an installer or the game as executable.

What is deploying?
- The process of making software available to be used on a system by users and other programs.

(e.g. uploading your game on Steam where people can download it)

https://docs.unrealengine.com/5.1/en-US/cooking-content-in-unreal-engine/

BuildCookRun

Packaging is done by the Unreal Automation Tool (UAT) with a particular command
called BuildCookRun.

"%ENGINE_DIR%\Engine\Build\BatchFiles\RunUAT.bat" BuildCookRun
-project="%PROJECT_DIR%\%PROJECT_NAME%.uproject" -noP4 -platform=Win64
-config=%BUILD_CONFIGURATION% -build -cook -stage -pak -allmaps -CrashReporter -archive
-archivedirectory="%ARCHIVE_DIRECTORY%"

let’s take a look at stuntfest

Key Gameplay Features of Stuntfest

- Different Game Modes (race, distance jump, …)

Resources & References

- Epic’s Documentation: https://docs.unrealengine.com/5.1/en-US/

- Blog by Ben Humphrey: https://benui.ca/unreal/
- Blog by Tom Looman: https://www.tomlooman.com/?post_type=post
- Blog by Nuno Afonso: http://www.nafonso.com/

- Network Compendium by Cedric 'eXi' Neukirchen:
https://cedric-neukirchen.net/Downloads/Compendium/UE4_Network_Compendium_
by_Cedric_eXi_Neukirchen.pdf

- John Coogan - Why Epic Games Took 25 Years to make Fortnite:
https://youtu.be/vNbrhLf36Uo

https://docs.unrealengine.com/5.1/en-US/
https://benui.ca/unreal/
https://www.tomlooman.com/?post_type=post
http://www.nafonso.com/
https://cedric-neukirchen.net/Downloads/Compendium/UE4_Network_Compendium_by_Cedric_eXi_Neukirchen.pdf
https://cedric-neukirchen.net/Downloads/Compendium/UE4_Network_Compendium_by_Cedric_eXi_Neukirchen.pdf
https://youtu.be/vNbrhLf36Uo

Bonus Slide: Collisions between two moving objects

- Each object has its own collision profile

- The response is the least blocking one, like so:

